## Math 1433

## 23 October 2023

$$
\begin{aligned}
& \text { What angle } \theta \in\left[0,180^{\circ}\right] \text { has } \\
& \qquad \cos (\theta)=\frac{-1}{2} ?
\end{aligned}
$$

Answer: $120^{\circ}$ or $\frac{2}{3} \pi$

## (half) problem session <br> Topic: equations of lines using vectors

Note: List 2 also has many tasks about planes. We will discuss those next week.

## Dok product

The dot product of two vectors $\vec{a}=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$,
also called the scalar product or inner product, is written as $\vec{a} \cdot \vec{b}$ (said out loud as "A dot B"). It is a number that can be computed as either

- $\vec{a} \cdot \vec{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}$
or
- $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos ($ angle between $\vec{a}$ and $\vec{b})$.

Example: Find the angle between $\left\langle\begin{array}{cc}\vec{a} & \vec{b} \\ \sqrt{3}, 1\rangle & \text { and } \\ \langle 0,7\rangle\end{array}\right.$.

$$
\begin{aligned}
& |\vec{a}|=\sqrt{(\sqrt{3})^{2}+1^{2}}=\sqrt{3+1}=2 \\
& |\vec{b}|=\sqrt{0^{2}+7^{2}}=7 \\
& \text { so } \vec{a} \cdot \vec{b}=(2)(7) \cos \theta .
\end{aligned}
$$

But also $\vec{a} \cdot \vec{b}=(\sqrt{3})(0)+(1)(7)=7$, so

$$
(2)(7) \cos \theta=7 \rightarrow \cos \theta=1 / 2 \rightarrow \theta=60^{\circ}
$$

## Orthogonal / perpendicular

## Two vectors are called orthogonal if their dot product is zero.

- For non-zero vectors, this means they are perpendicular (or normal). Why?

$$
\cos (\text { angle })=0 \quad \leftrightarrow \quad \text { angle }=90^{\circ}
$$

- The zero vector is orthogonal to every vector.

Which of $\vec{a}=[2,1]$ or $\vec{b}=[2,3]$ is orthogonal to $[2,-4]$ ?

Give an example of...

- a non-zero vector that is orthogonal to $\vec{w}=[7,3]$.

All are scalar multiples of $[3,-7]$.

- a non-zero vector that is orthogonal to $\vec{a}=[3,-1,2]$.

There are many totally different answers.

- a non-zero vector that is orthogonal to $\vec{a}=[3,-1,2]$ and $\vec{b}=[4,2,5]$.

All are scalar multiples of $[9,7,-10]$, but it's much harder to see why or to find that vector in the first place.

## Cross product

For 3D vectors only, the cross product of $\vec{a}$ and $\vec{b}$, written $\vec{a} \times \vec{b}$ and spoken as " A cross B ", is the unique vector that is

- perpendicular to both $\vec{a}$ and $\vec{b}$,
- has length $|\vec{a}||\vec{b}| \sin (\theta)$, where $\theta$ is the angle between $\vec{a}$ and $\vec{b}$,
- and points in the direction given by the "Right-Hand Rule".

Right-hand rule for cross products


## Cross product

For 3D vectors only, the cross product of $\vec{a}$ and $\vec{b}$, written $\vec{a} \times \vec{b}$, can be calculated using only

$$
\hat{\imath} \times \hat{\jmath}=\hat{k} \quad \hat{\jmath} \times \hat{k}=\hat{\imath} \quad \hat{k} \times \hat{\imath}=\hat{\jmath} \quad \vec{b} \times \vec{a}=-(\vec{a} \times \vec{b})
$$

and very careful algebra.

There is also a direct formula, but it's ugly:

$$
\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right] \times\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
a_{2} b_{3}-a_{3} b_{2} \\
a_{3} b_{1}-a_{1} b_{3} \\
a_{1} b_{2}-a_{2} b_{1}
\end{array}\right] .
$$



Example: Calculate $[3,-1,2] \times[4,2,5]$.

$$
\begin{aligned}
& (3 \hat{\imath}-\hat{\jmath}+2 \hat{k}) \times(4 \hat{\imath}+2 \hat{\jmath}+6 \hat{k}) \\
& =(3 \hat{\imath}-\hat{\jmath}+2 \hat{k}) \times 4 \hat{\imath}+(3 \hat{\imath}-\hat{\jmath}+2 \hat{k}) \times 2 \hat{\jmath}+\cdots \\
& =12(\hat{\imath} \times \hat{\imath})-4(\hat{\jmath} \times \hat{\imath})+8(\hat{k} \times \hat{\imath})+6(\hat{\imath} \times \hat{\jmath})+(-2)(\hat{\jmath} \times \hat{\jmath})+\cdots \cdots \\
& =12(0)-4(-\hat{k})+8(\hat{\jmath})+6(\hat{k})+2(0)+\cdots \cdots \\
& =(4 \hat{k}+8 \hat{\jmath})+(6 \hat{k}-4 \hat{\imath})+(-6 \hat{\imath}-16 \hat{\jmath}) \\
& =(-4 \hat{\imath}-6 \hat{\imath})+(8 \hat{\jmath}-16 \hat{\jmath})+(4 \hat{k}+6 \hat{k}) \\
& =-9 \hat{\imath}-7 \hat{\jmath}+10 \hat{k} \quad \begin{array}{l}
\text { Note } \hat{\imath} \times \hat{\jmath}=\hat{k} \\
\quad
\end{array} \quad \begin{array}{l}
\text { but } \hat{\jmath} \times \hat{\imath}=-\hat{k} .
\end{array}
\end{aligned}
$$

The direct formula is faster but requires more memorization.

Obvious (?) formulas:

- $\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{l}a+c \\ b+d\end{array}\right]$
- $\left[\begin{array}{l}a \\ b\end{array}\right]-\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{l}a-c \\ b-d\end{array}\right]$
- $s\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}s a \\ s b\end{array}\right]$

Also $|\vec{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}$.

Surprising (?) formulas:

- $\left[\begin{array}{l}a \\ b\end{array}\right] \cdot\left[\begin{array}{l}c \\ d\end{array}\right]=a c+b d$
- $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \cdot\left[\begin{array}{l}d \\ e \\ f\end{array}\right]=a d+b e+c f$
$\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \times\left[\begin{array}{l}d \\ e \\ f\end{array}\right]=\left[\begin{array}{c}b f-c e \\ c d-a f \\ a e-b d\end{array}\right]$

We will never use $\left[\begin{array}{l}a c \\ b d\end{array}\right]$ at all.

Which of these calculations are possible if $\vec{a} \in \mathbb{R}^{2}$ and $\vec{b} \in \mathbb{R}^{3}$ ?

1. $\vec{a}+\vec{b}$
2. $\vec{a}+\vec{b}$
3. $\vec{a} \vec{b}$
4. $\vec{a} \times \vec{a}$
5. $\vec{b} \times \vec{b}$
6. $\vec{a} \vec{b}$
7. $\vec{a} \cdot \vec{a}+\vec{b} \times \vec{b} \quad$ No

## Quiz 2

Date: 30 October
Topics:

- vector subtraction
- magnitude of a vector
- dot product

I will write the formula $|\vec{a}||\vec{b}| \cos \theta$ on the quiz paper for you.
I will not give you the formulas $a_{1} b_{1}+\cdots$ or $\sqrt{a_{1}^{2}+\cdots}$.
In the future, I will give you a formula for $\vec{a} \times \vec{b}$ if you need it.

