What angle $\theta \in [0, 180^\circ]$ has $\cos(\theta) = \frac{-1}{2}$?

23 October 2023

Answer: 120° or $\frac{2}{3}$

5

next week.

(half) problem session **Topic: equations of lines using vectors**

Note: List 2 also has many tasks about planes. We will discuss those

out loud as "A dot B"). It is a number that can be computed as either • $\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$ Or

• $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos(\text{angle between } \vec{a} \text{ and } \vec{b}).$

The **dot product** of two vectors $\vec{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ and $\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$,

also called the scalar product or inner product, is written as $\vec{a} \cdot \vec{b}$ (said

Example: Find the angle between $\langle \sqrt{3}, 1 \rangle$ and $\langle 0, 7 \rangle$.

 $|\vec{a}| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{3+1} = 2$ $|\vec{b}| = \sqrt{o^2 + 7^2} = 7$ So $\vec{a} \cdot \vec{b} = (2)(7)\cos\theta$. But also $\vec{a} \cdot \vec{b} = (\sqrt{3})(0) + (1)(7) = 7, so$ $(2)(7)\cos\theta = 7 \rightarrow \cos\theta = 1/2 \rightarrow \theta = 60^{\circ}$

Two vectors are called orthogonal if their dot product is zero.

Why?

cos(angle) = 0

The zero vector is orthogonal to every vector. 0

Orthogonal / perpendicular

For non-zero vectors, this means they are perpendicular (or normal).

angle $= 90^{\circ}$

Which of $\vec{a} = [2, 1]$ or $\vec{b} = [2, 3]$ is orthogonal to [2, -4]?

Give an example of... • a non-zero vector that is orthogonal to $\vec{w} = [7, 3]$. All are scalar multiples of [3, -7]. • a non-zero vector that is orthogonal to $\vec{a} = [3, -1, 2]$. There are many totally different answers. ^a a non-zero vector that is orthogonal to $\vec{a} = [3, -1, 2]$ and $\vec{b} = [4, 2, 5]$. All are scalar multiples of [9, 7, -10], but it's much harder to see why or to find that vector in the first place.

spoken as "A cross B", is the unique vector that is perpendicular to both \vec{a} and \vec{b} , • has length $|\vec{a}| |\vec{b}| \sin(\theta)$, where θ is the angle between \vec{a} and \vec{b} , and points in the direction given by the "Right-Hand Rule". 0

For 3D vectors only, the cross product of \vec{a} and \vec{b} , written $\vec{a} \times \vec{b}$ and

can be calculated using only

and *very* careful algebra.

There is also a direct formula, but it's ugly:

 $\begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}.$

For 3D vectors only, the **cross product of** \vec{a} and \vec{b} , written $\vec{a} \times \vec{b}$,

 $\hat{i} \times \hat{j} = \hat{k}$ $\hat{j} \times \hat{k} = \hat{i}$ $\hat{k} \times \hat{i} = \hat{j}$ $\vec{b} \times \vec{a} = -(\vec{a} \times \vec{b})$

Example: Calculate $[3, -1, 2] \times [4, 2, 5]$. $(3\hat{i} - \hat{j} + 2\hat{k}) \times (4\hat{i} + 2\hat{j} + 5\hat{k})$ $= (3\hat{i} - \hat{j} + 2\hat{k}) \times 4\hat{i} + (3\hat{i} - \hat{j} + 2\hat{k}) \times 2\hat{j} + \cdots$ $= 12(\hat{i} \times \hat{i}) - 4(\hat{j} \times \hat{i}) + 8(\hat{k} \times \hat{i}) + 6(\hat{i} \times \hat{j}) + (-2)(\hat{j} \times \hat{j}) + \cdots$ $= 12(0) - 4(-\hat{k}) + (\hat{k}) + 6(\hat{k}) + 2(0) + \cdots$ $= (4\hat{k} + 8\hat{j}) + (6\hat{k} - 4\hat{i}) + (-5\hat{i} - 15\hat{j})$ $= (-4\hat{i} - 5\hat{i}) + (8\hat{j} - 15\hat{j}) + (4\hat{k} + 6\hat{k})$ $= 9\hat{i} - 7\hat{j} + 10k$ Note $\hat{i} \times \hat{j} = \hat{k}$

The direct formula is faster but requires more memorization.

Note $\hat{i} \times \hat{j} = \hat{k}$ but $\hat{j} \times \hat{i} = -\hat{k}$.

Obvious (?) formulas: $\begin{array}{c|c} a \\ \bullet \\ b \end{array} + \begin{array}{c} c \\ d \end{array} = \begin{array}{c} a+c \\ b+d \end{array}$ $\begin{vmatrix} a \\ b \end{vmatrix} = \begin{vmatrix} c \\ d \end{vmatrix} = \begin{vmatrix} a - c \\ b - d \end{vmatrix}$ \circ $S \begin{vmatrix} a \\ b \end{vmatrix} = \begin{vmatrix} sa \\ sb \end{vmatrix}$

Also $|\vec{v}| = \sqrt{v_1^2 + v_2^2 + v_3^2}.$

We will never use $\begin{bmatrix} ac \\ bd \end{bmatrix}$ at all.

Surprising (?) formulas: a | c | = ac + bd $\begin{bmatrix} a \\ b \\ c \end{bmatrix} \times \begin{bmatrix} d \\ e \\ f \end{bmatrix} = \begin{bmatrix} bf - ce \\ cd - af \\ ae - bd \end{bmatrix}$

Which of these calculations are possible if $\vec{a} \in \mathbb{R}^2$ and $\vec{b} \in \mathbb{R}^3$? 1. $\vec{a} + \vec{b}$ No (vectors have different dimensions) 2. $\vec{a} + \vec{b}$ Yes (simply adding two numbers) 3. $\vec{a}\vec{b}$ NO 4. $\vec{a} \times \vec{a}$ No (both vectors must be 3D for x) 5. $\vec{b} \times \vec{b}$ Yes (note: it will be [0,0,0]) $6. \quad \vec{a} \quad \vec{b}$ Yes (scalar multiplication) 7. $\vec{a} \cdot \vec{a} + \vec{b} \times \vec{b}$ NO

Date: 30 October Topics:

- vector subtraction
- magnitude of a vector 0
- dot product 0

I will write the formula $|\vec{a}| |\vec{b}| \cos \theta$ on the quiz paper for you. I will <u>not</u> give you the formulas $a_1b_1 + \cdots + or \sqrt{a_1^2 + \cdots}$. In the future, I will give you a formula for $\vec{a} \times \vec{b}$ if you need it.

